
© DFKI - JK

Principles & Tactics

Architectural Thinking for Intelligent Systems

Winter 2019/2020

Prof. Dr. habil.Jana Koehler

© DFKI - JK

Agenda

 Implementation of functional and non-functional
requirements applying principles & tactics

 10 principles
– Loose Coupling
– High Cohesion
– Design for Change
– Separation of Concerns
– Information Hiding
– Abstraction
– Modularity
– Traceability
– Self documentation
– Incrementality

 Tactics as a method to address a quality attribute
Architectural Thinking for Intelligent Systems: Principles & Tactics2

© DFKI - JK

Conception of the Architecture

 Use cases, user stories & scenarios are clarified such that
we can proceed with an acceptable level of risks

 The context view has been reviewed with stakeholders to
reach agreement on what we will built and what we require
from the environment

 We have a good understanding of the most important
architectural decisions that we need to address

 The system idea has been developed

 We can start developing the architecture and prototype
critical parts of the system

 Principles & Tactics
Architectural Thinking for Intelligent Systems: Principles & Tactics3

© DFKI - JK

Tutorial Assignment 8:

 We apply principles and tactics to further refine the
architecture of our system.

 We choose the two most important architectural principles,
which will guide architectural decision making.

 We also decide for specific tactics that help us to achieve
the desired system qualities.

Architectural Thinking for Intelligent Systems: Principles & Tactics4

© DFKI - JK

Principles

Architectural Thinking for Intelligent Systems: Principles & Tactics5

"It is only through the relationships between the
components of a system that an architecture really
takes effect."

© DFKI - JK

Influence of Architectural Means on Architecture
 Principles, such as cohesion or coupling, provide general

guidelines
 Architectural styles, tactics and patterns provide detailed

solutions for concrete design decisions
 Concepts, such as object orientation or aspect orientation,

help implementing principles in the software design

Architectural Thinking for Intelligent Systems: Principles & Tactics6

In
flu

en
ce

on
 A

rc
hi

te
ct

ur
e

Architectural Means

Principles
Concepts

Tactics,
Styles, and

Patterns

Basic
Architectures

Reference
Architectures

© DFKI - JK

Architectural Principles

 Architectural principles provide proven foundations on which
the architecture can be built

 2 main objectives
– Reduction of complexity
– Increased flexibility/changeability by using a good system

structure

 Do not say anything about how these principles are applied
in a specific case

Architectural Thinking for Intelligent Systems: Principles & Tactics7

© DFKI - JK

10 Basic Principles

1. Loose Coupling
2. High Cohesion
3. Design for Change
4. Separation of Concerns
5. Information Hiding
6. Abstraction
7. Modularity
8. Traceability
9. Self-Documentation
10. Incrementality

Architectural Thinking for Intelligent Systems: Principles & Tactics8

© DFKI - JK

1. Loose Coupling

 Any type of dependency between two components leads to
a coupling
– Mutual calls, shared data, …

 For a given coupling, one component is the provider, the
other the consumer

• A calls B: A is consumer, B provider
• A includes B: A is consumer, B provider
• A writes in a message queue, from which B reads: …

 Coupling is tight, if changes in the provider affect the
consumer(s)

 Goal must be a loose coupling where providers can change
without affecting consumers

Architectural Thinking for Intelligent Systems: Principles & Tactics9

© DFKI - JK

2. High Cohesion

 Describes dependencies between structures
(subcomponents) within one component
– Example: methods calling each other within a class

 Components should include all elements, which implement
the relevant and connected behaviors of this component
– Check: Can I understand and change a component

without understanding/changing other components?
– How easy is the component to understand?

 Encapsulate related functionality in one component

Architectural Thinking for Intelligent Systems: Principles & Tactics10

© DFKI - JK

3. Design for Change

 Anticipate foreseeable changes in the architecture
– e.g. from open requirements that had to be moved to a

next release of a software

 Ignore unforeseeable requirements!
– Problem of a "too flexible" architecture

 Design components based on goal hierarchies and
interrelated user stories

Architectural Thinking for Intelligent Systems: Principles & Tactics11

© DFKI - JK

4. Separation of Concerns

 Separate different aspects of a problem from each other and
deal with each of these subproblems separately

 Each functionality is implemented in exactly one component
and only there

 Break down
– Requirements
– organizational responsibilities
– system into a structure of subsystem
– complex architecture description into views
– process of architecture creation into subprocesses

Architectural Thinking for Intelligent Systems: Principles & Tactics12

© DFKI - JK

5. Information Hiding

 Only reveal those information entities to a component, the
component needs to function correctly

 Hide all other information entities

 Examples
– OOP: data fields are „private“, data access only via

methods
– Fassade pattern: shields complex systems and controls

access to system components
– Layers: layer n only uses layer n-1, does not know about

other layers

Architectural Thinking for Intelligent Systems: Principles & Tactics13

© DFKI - JK

6. Abstraction

 Identify important aspects, neglect unimportant details
– Special case of information hiding

 Most widely used: interface abstraction

 Find commonalities in things that appear to be different at a
first glance (entities, value objects, events, services)

 Use when negotiating functional requirements

Architectural Thinking for Intelligent Systems: Principles & Tactics14

© DFKI - JK

7. Modularity

 Structure the system such that each component has a
clearly defined functional responsibility

 System components easily exchangeable and self-
contained
– manageable, understandable, easy to maintain and

reusable

 Achieve simple and stable architectural relationships by
finding the right balance between separating concerns and
self-containedness

Architectural Thinking for Intelligent Systems: Principles & Tactics15

© DFKI - JK

8. Traceability

 Ability to follow structures and architectural decisions from
requirements to code (remember SMART)

 How easily can your architecture be understood?

 Traceability as a key to achieve long-term viability

 Foundation to map different views to each other and
achieve a consistent description of the system
– Elementary implementation: use uniform naming

conventions

Architectural Thinking for Intelligent Systems: Principles & Tactics16

© DFKI - JK

9. Self-Documentation

 Every information required to understand a component or
system should be a direct part of the component or system

 Reality: documentation and code get out of sync quickly

 Work in iterations across architecture – design – code

 Achieve stability in naming conventions and key structures
and relationsships through domain-driven design

 Communicate!

Architectural Thinking for Intelligent Systems: Principles & Tactics17

© DFKI - JK

10. Incrementality

 Apply separation of concerns when developing the
architecture
– Work in phases, define milestones, review results

 Early prototyping
 Early feedback from stakeholders

 Build large systems in iterations

 Achieve piecemeal growth through good release planning
– Goal hierarchies and scenarios help

Architectural Thinking for Intelligent Systems: Principles & Tactics18

© DFKI - JK

How Principles Support Each Other

Architectural Thinking for Intelligent Systems: Principles & Tactics19

Vogel et al: Software Architektur

Incrementality

Design
for

Change

Loose
Coupling

Traceability

Separation
of

Concerns

Self-
Documentation

Modularity

Information
HidingAbstraction

High
Cohesion

is a form of

realizes

supports
unexpected
changes

realizes
realizes

realizes

realized byrealized byrealized by

leads to

is a form of
(modules as blck boxes)

is a form of
(module abstraction)

is a form of
(module creation)

abstractions for
platform-

independence;
interfaces, …

© DFKI - JK

How Principles Support Each Other
 High cohesion can be achieved by abstraction, separation of

concerns und information hiding
 Loose coupling and high cohesion can be achieved by modularity
 Design for change can be achieved by loose coupling,

abstraction, modularity, separation of concerns and information
hiding

 Abstraction helps to implement loose coupling, modularity
 Modularity combines abstraction, separation of concerns and

information hiding and supports high cohesion and loose coupling
 Traceability supports loose coupling and design for change
 Self-Documentation supports design for change and traceability

Architectural Thinking for Intelligent Systems: Principles & Tactics20

© DFKI - JK

How do you assess Coupling?

Architectural Thinking for Intelligent Systems: Principles & Tactics21

© DFKI - JK

And here?

Architectural Thinking for Intelligent Systems: Principles & Tactics22

Quelle: IBM

© DFKI - JK

How do you assess Coupling and Cohesion
in both Systems?

Architectural Thinking for Intelligent Systems: Principles & Tactics23

© DFKI - JK

Cohesion of the StockCheck component?

Architectural Thinking for Intelligent Systems: Principles & Tactics24

© DFKI - JK

Cohesion in this Version?

Architectural Thinking for Intelligent Systems: Principles & Tactics25

© DFKI - JK

Information Hiding via Facade

 Advantages and disadvantages of both systems?
 Which other principle(s) is/are recognizable here?

Architectural Thinking for Intelligent Systems: Principles & Tactics26

Client 1 Client 2 Client 1 Client 2

© DFKI - JK

Interface Abstraction

 Find a good balance between general and specific interfaces
 Segregation of interfaces

– No client should be forced to depend on methods it does
not use

– Split generic interfaces into more specific ones such that
clients only need to know about methods they need

– Keep a system decoupled, achieve loose coupling
 Design by Contract

– Specify pre-/postconditions, invariants of an interface
– Currently: Apache Assertions, Google Guava

preconditions

Architectural Thinking for Intelligent Systems: Principles & Tactics27

© DFKI - JK

Open and Closed Components

 Open for change

 Closed for access to internal details by other components

 Achieve openess through design for change

 Achieve closedness through interface abstraction and
information hiding

Architectural Thinking for Intelligent Systems: Principles & Tactics28

© DFKI - JK

Components can be Coupled through …

 Calls

 Creation/Instantiation

 Data dependencies

 Hardware or runtime environments

 Temporal depencies

Architectural Thinking for Intelligent Systems: Principles & Tactics29

© DFKI - JK

Tactics

Architectural Thinking for Intelligent Systems: Principles & Tactics30

"There are many ways to do design badly,
and just a few ways to do it well."

Bass, Clements, Kazman
Software Architecture in Practice

© DFKI - JK

Tactics
 A tactic is a design decision that influences the

realization of the response of a quality attribute
scenario

 Specific technical solutions that help to achieve desired
system qualities
– E.g. Undo Command für Usability

 Determine the response of the system to react to a stimulus
– Each tactic uses one specific structure or mechanism
– Ignores trade-offs & compromises

Architectural Thinking for Intelligent Systems: Principles & Tactics31

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: Principles & Tactics32

Change
is performed,
tested, and
deployed

Change
Stimulus

Modifiability Tactics

Localize
Change

Avoid
Propogation

Delay
Binding Times

• Semantic
Coherence

• Prevision of
Changes
Module

• Generalization
Abstraction of
General Services

• Hide Information
• Maintain Existing

Interfaces
• Restrict

Communication
Paths

• Use of
Indirection Services

• Runtime
Registration

• Declarability
• Polymorphism
• Use of Standard

Services

© DFKI - JK

Taktics for Availability

 Failure: System no longer provides a service or does not
provide it as specified and expected
– the system fails and the failure can be perceived by the

actors acting in/with the system

 Fault: A defect with the potential to trigger a failure

 Availability tactics focus on building systems that can
withstand faults or intercept faults in such a way that they do
not become failures
– minimal tactics: limit effects of faults and enable repair

Architectural Thinking for Intelligent Systems: Principles & Tactics33

© DFKI - JK Architectural Thinking for Intelligent Systems: Principles & Tactics34

© DFKI - JK

Make Decisions Specific wrt. Availability

1. Assignment of Responsibilities
– What must be highly available?
– Are there any responsibilities in the system that can be

used to determine faults and failures?
• logging, notification, disabling fault causing events, be

temporarily unavailable, fix/mask the fault/failure, operate in
degraded mode

2. Coordination Model
– Can coordination mechanisms detect availability problems (e.g.

guaranteed delivery of messages?)
– Are system parts exchangeable?
– Does the coordination work under limited operation?

Architectural Thinking for Intelligent Systems: Principles & Tactics35

© DFKI - JK

Make Decisions Specific wrt. Availability

3. Data Model
– Which data sources/data operations can cause

Faults/Failure?
– Ensure that these sources/operations can be disabled,

temporarily unavailable, fixed/masked
• For example, cache write requests when a server is down and

write later when server is up again

4. Resource Management
– Which critical resources must function in limited

operation?
5. Mapping

– Is mapping between vulnerable elements flexible
enough to allow for recovery?

Architectural Thinking for Intelligent Systems: Principles & Tactics36

© DFKI - JK

Make Decisions Specific wrt. Availability

6. Binding Time
– Is late binding used? What happens if involved

components are affected by faults?
• For example, how long can the response of a process be

delayed until a fault must be anticipated?

7. Choice of Technology
– What is available for logging, recovery, …
– From which errors can the technology recover.
– What faults can a technology bring into the system?

Architectural Thinking for Intelligent Systems: Principles & Tactics37

© DFKI - JK Architectural Thinking for Intelligent Systems: Principles & Tactics38

© DFKI - JK Architectural Thinking for Intelligent Systems: Principles & Tactics39

© DFKI - JK

Recommendations for the Design of Component Structures

 Component functionality is well-defined and implements
information hiding and separation of concerns

 DOMAIN-DRIVEN DESIGN – ENTITIES, LIFECYCLES,
SERVICES

 Interfaces are well defined and “hide” change
– Development teams can implement components

independently of each other based on interface
definitions

 Tactics and patterns are used
 Architecture must never depend on a specific product/tool

Architectural Thinking for Intelligent Systems: Principles & Tactics40

© DFKI - JK

Recommendations for the Design of Component Structures

 Data producing and data consuming components are clearly
separated from each other

 Relationship between development components and
runtime components are understood (not nec. 1-1)

 Processes should be easily modifiable, if necessary at
runtime

 Only a few types of interaction should be present in the
system

 The same type of interaction should be implemented in the
same way

 Resource conflicts are recognized and their resolution is
clearly defined

Architectural Thinking for Intelligent Systems: Principles & Tactics41

© DFKI - JK

Architecture Definition II

Architectural Thinking for Intelligent Systems: Principles & Tactics42

A software system's architecture is the set
of principal design decisions made about
the system.

Taylor, Medvidovic, Dashofy
Software Architecture - Foundations, Theory and Practice
Wiley 2010

For further definitions see
http://www.sei.cmu.edu/architecture/start/community.cfm

Architecture means making decisions

© DFKI - JK

Quality Attributes as Forces on Solution

Architectural Thinking for Intelligent Systems: Principles & Tactics43

Understand forces
Find compromises
Validate early
Reuse proven solution ideas

Solution Modifiability

Simplicity

Reusability

Maintainability

Time-to-Market

Costs

Performance

Memory
Stability

Vogel et al.

© DFKI - JK

Architectural Thinking

Architectural Thinking for Intelligent Systems: Principles & Tactics44

Source: IBM Architectural Thinking

feasible+can evolve

Input Process of
architectural Thinking Output

© DFKI - JK

Conway's Law

Architectural Thinking for Intelligent Systems: Principles & Tactics45

Conway's law is an adage named after computer
programmer Melvin Conway, who introduced the idea in
1968; it was first dubbed Conway's law by participants at the
1968 National Symposium on Modular Programming.

It states that organizations which design systems ... are
constrained to produce designs which are copies of the
communication structures of these organizations
—M. Conway

Conway, Melvin E. (April 1968)
"How do Committees Invent?", Datamation 14 (5): 28–31

http://en.wikipedia.org/wiki/Melvin_Conway
http://www.melconway.com/research/committees.html

© DFKI - JK

Summary

 Principles and tactics as a basis to find a system structure
implementing requirements

 Principles can support each other, must be made specific
for a given architecture

 Each tactic only supports a single quality attribute
 Work iteratively based on a close interaction with the

development team, actively support agile development
 Architectural decisions are the responsibility of the architect
 Base decision on a prioritized list of quality attributes
 Constantly create and revise views for stakeholders
 Evaluate architectures early and repeat evaluation

Architectural Thinking for Intelligent Systems: Principles & Tactics46

© DFKI - JK

Working Questions
1. How do you define architecture from the point of view

of the work process and the architect's work
products?

2. Explain how quality attributes act as forces in
solution finding.

3. What is an architectural principle? Give examples of
principles for a good architectural design.

4. Explain the relationship between 2 given architectural
principles.

5. What are tactics?
6. What do tactics NOT deal with?
7. Explain examples of tactics for a quality attribute.

Architectural Thinking for Intelligent Systems: Principles & Tactics47

	Principles & Tactics
	Agenda
	Conception of the Architecture
	Tutorial Assignment 8:
	Principles
	Influence of Architectural Means on Architecture
	Architectural Principles
	10 Basic Principles
	1. Loose Coupling
	2. High Cohesion
	3. Design for Change
	4. Separation of Concerns
	5. Information Hiding
	6. Abstraction
	7. Modularity
	8. Traceability
	9. Self-Documentation
	10. Incrementality
	How Principles Support Each Other
	How Principles Support Each Other
	How do you assess Coupling?
	And here?
	How do you assess Coupling and Cohesion �in both Systems?
	Cohesion of the StockCheck component?
	Cohesion in this Version?
	Information Hiding via Facade
	Interface Abstraction
	Open and Closed Components
	Components can be Coupled through …
	Tactics
	Tactics
	Example
	Taktics for Availability
	Foliennummer 34
	Make Decisions Specific wrt. Availability
	Make Decisions Specific wrt. Availability
	Make Decisions Specific wrt. Availability
	Foliennummer 38
	Foliennummer 39
	Recommendations for the Design of Component Structures
	Recommendations for the Design of Component Structures
	Architecture Definition II
	Quality Attributes as Forces on Solution
	Architectural Thinking
	Conway's Law
	Summary
	Working Questions

