
© DFKI - JK

Modeling for Architects I:
UML

Architectural Thinking for Intelligent Systems

Winter 2019/2020

Marcel Köster, Kai Waelti, Jochen Britz
Prof. Dr. habil. Jana Koehler

© DFKI - JK

References & Special Thanks

 Prof. Sven Apel for his slides & material

 https://www.uml-diagrams.org/ for several images

 https://c4model.com/ for some images

Architectural Thinking for Intelligent Systems: UML2

https://www.uml-diagrams.org/
https://c4model.com/

© DFKI - JK

Agenda

 Capturing architectural concepts with UML 2

 Basics & class diagrams (repetition)

 Sequence diagrams

 Package & Component diagrams

 State machines

 Use case diagrams

Architectural Thinking for Intelligent Systems: UML3

© DFKI - JK

Views and Diagrams

 We will later in this lecture discuss views, which help us to
communicate architectural concerns and decisions

 There is no standard for the representation of views, but
some modeling standards are helpful and commonly used

 Context view – none !
 Component view – UML package and component diagrams
 Distribution view – UML package and component diagrams
 Runtime view - UML sequence diagrams, UML state

machins, BPMN collaboration diagrams
 Functional requirements – UML use case diagrams

Architectural Thinking for Intelligent Systems: UML4

© DFKI - JK

Learning Objectives

 Know
– purpose of UML
– 14 different diagram types

 Being able to
– capture architectural concepts with UML 2.5.1
– communicate architectural concerns and decisions using

views
– explain how UML describes structures, processes and

states of software

Architectural Thinking for Intelligent Systems: UML5

© DFKI - JK

What is UML?

 Uniform notation
Booch + OMT + Use Cases (+ state charts)

 UML is *not*
– A method
– A process

Architectural Thinking for Intelligent Systems: UML6

© DFKI - JK

UML (in a nutshell)

Architectural Thinking for Intelligent Systems: UML7

© DFKI - JK

Why UML?

Architectural Thinking for Intelligent Systems: UML8

 There are other modeling languages like
– Systems Modeling Language SysML

• Is less software centric and a lot smaller
– The Open Group’s ArchiMate

• Best for higher-level Enterprise Architectures

 UML is the de-facto standard for software modeling
 UML fits nicely under the covers

– Describes the system from various perspectives

© DFKI - JK

Purpose of UML

Architectural Thinking for Intelligent Systems: UML9

 Provides unified notation and semantics of modeling
elements

 Describes structures and processes of a system

 Offers possibility for different views on a system

 Allows people to understand and talk about the design
decisions

© DFKI - JK

Maps of Your System

Architectural Thinking for Intelligent Systems: UML10

 Use different views with different levels of detail
– Tell different stories to different types of audiences

 Helps to describe architecture during up-front design
sessions as well as retrospectively documenting an
existing code base

© DFKI - JK

UML 2.5 Hierarchy from Paulo Merson

Architectural Thinking for Intelligent Systems: UML11

https://commons.wikimedia.org/wiki/File:Uml_diagram2.png

© DFKI - JK

STRUCTURAL DIAGRAM
TYPES

Architectural Thinking for Intelligent Systems: UML12

© DFKI - JK

Class Diagram – building blocks of object-oriented systems

Architectural Thinking for Intelligent Systems: UML13

© DFKI - JK

Class Diagram Focus on Behavior

 Class diagrams show generic descriptions of
possible systems

 Object diagrams show particular instantiations of systems
and their behavior

 Attributes and operations are also collectively called
features

 Risk of turning into data models
→ be sure to focus on behavior!

Architectural Thinking for Intelligent Systems: UML14

© DFKI - JK

Class Diagram UML 2.5 Reference

Architectural Thinking for Intelligent Systems: UML15

© DFKI - JK

Interfaces

 Equivalent to abstract classes minus the attributes
 Represented as classes with explicit stereotype

«interface» or implicit lollipop notation

Architectural Thinking for Intelligent Systems: UML16

© DFKI - JK

Objects

 Class is a blueprint from which objects are created
– Class: Human
– Object: Man, Woman

 Shown as rectangles with their name and type underlined

Architectural Thinking for Intelligent Systems: UML17

© DFKI - JK

Associations

Architectural Thinking for Intelligent Systems: UML18

 Represent structural relationships between objects
 Multiplicity constraints how many entities one may be

associated with

© DFKI - JK

 Aggregation → parts may be shared
 Composition → one part belongs to one whole

Aggregation vs. Composition

Architectural Thinking for Intelligent Systems: UML19

© DFKI - JK

 MailOrder and BoxOfficeOrder specialize their superclass
Order

Generalization

Architectural Thinking for Intelligent Systems: UML20

© DFKI - JK

 New software often builds on old software by imitation,
refinement, or combination

 Similarly, classes may be extensions, specializations or
combinations, of existing classes

Why Inheritance?

Architectural Thinking for Intelligent Systems: UML21

© DFKI - JK

Generalization Expresses…
 Conceptual hierarchy

– conceptually related classes can be organized into a
specialization hierarchy

• people, employees, managers
• geometric objects

 Polymorphism
– objects of distinct, but related classes may be uniformly

treated by clients
• array of geometric objects

 Software reuse
– related classes may share interfaces, data structures or

behavior
• geometric objects

Architectural Thinking for Intelligent Systems: UML22

© DFKI - JK

Component Diagram

 Shows components, provided and required interfaces,
ports, and relationships between them

 Based on assumptions, that previously constructed
components could be reused
– or be replaced by some other equivalent component

 Artifacts that implement the component are intended to be
capable of being deployed independently
– e.g. for updating an existing system

Architectural Thinking for Intelligent Systems: UML25

© DFKI - JK

Components Could Represent…

 Logical components
– e.g. business components, process components, etc.

 Physical components
– e.g. EJB components, COM+ and .NET components,

WSDL components, etc.

 A component is a replaceable part of a system that
conforms to and provides the realization of a set of
interfaces

Architectural Thinking for Intelligent Systems: UML26

© DFKI - JK

UserService Component

Component Notation

 An interface is a collection of operations that specify a
service that is provided by or requested from a
component

Provided Interface Required Interface

Architectural Thinking for Intelligent Systems: UML27

© DFKI - JK

Components Notation: Ports

 A port is a specific window into an encapsulated
component accepting messages
– to and from the component

Simple Port

Architectural Thinking for Intelligent Systems: UML28

© DFKI - JK

Components: Parts and Connectors

 A part is a specification of a role that composes part of
the implementation of a component

 A connector is a communication relationship between
two parts or ports within the context of a component
– Connector linking could be either delegation or

assembly connector

Architectural Thinking for Intelligent Systems: UML29

© DFKI - JK

 Connector between two or more parts or ports
 Defines that one or more parts provide the services that

other parts use

Assembly connector that assembles 3 parts

Components: Assembly Connectors

Architectural Thinking for Intelligent Systems: UML30

© DFKI - JK

Components: Delegation Connector

 Connector that links the external contract of a component
to the realization of that behavior

 Represents the forwarding of events
 Can be used to model hierarchical decomposition of

behavior
 A port may delegate to a set of ports on subordinate

components

Architectural Thinking for Intelligent Systems: UML31

© DFKI - JK

Component Diagram: A Reference

Architectural Thinking for Intelligent Systems: UML32

© DFKI - JK

Packages Notation

 A package diagram shows structure of the designed
system at level of packages

 Package is a namespace used to group together elements
that are semantically related and might change together
– May own packageable elements like

Type, Classifier, Use Case, etc.

– Can be used as a template for other packages
• Template parameters can be offered through packageable

elements

– Different directed relationships
• use, import, merge

Architectural Thinking for Intelligent Systems: UML33

© DFKI - JK

Package Diagram: A Reference

Architectural Thinking for Intelligent Systems: UML34

© DFKI - JK

Package Diagram: Design Pattern known as Transfer Obj.

Architectural Thinking for Intelligent Systems: UML35

© DFKI - JK

Deployment Diagram

Architectural Thinking for Intelligent Systems: UML36

© DFKI - JK

BEHAVIORAL DIAGRAM TYPES

Architectural Thinking for Intelligent Systems: UML37

© DFKI - JK

Use Case Diagram

Architectural Thinking for Intelligent Systems: UML38

© DFKI - JK

Using Use Case Diagrams

 Generic description of an entire transaction involving
several actors

 Presents a set of use cases (ellipses) and the external
actors that interact with the system

 Dependencies and associations between use cases may
be indicated

 “A use case is a snapshot of one aspect of your system.
The sum of all use cases is the external picture of your
system”

Architectural Thinking for Intelligent Systems: UML39

© DFKI - JK

Sequence Diagram

Architectural Thinking for Intelligent Systems: UML40

© DFKI - JK

Using Sequence Diagrams

 Depicts a scenario by showing the interactions among a
set of objects in temporal order

 Objects (not classes!) are shown in vertical bars

 Events or message dispatches are shown as horizontal
arrows from the sender to the receiver

 Avoid returns in sequence diagrams, unless they add
clarity

Architectural Thinking for Intelligent Systems: UML41

© DFKI - JK

Asynchrony and Constraints in Sequence Diagrams

Architectural Thinking for Intelligent Systems: UML42

© DFKI - JK

State Diagram

 Describes the temporal evolution of an object of a given
class in response to interactions with other objects inside
or outside the systems

Architectural Thinking for Intelligent Systems: UML43

© DFKI - JK

State Diagram: States and Events

 A state is a period of time during which an object is
waiting for an event to occur
– may be nested
– depicted as rounded box with (up to) three sections

• name
• state variables
• triggered operations

 An event is a one-way asynchronous communication from
one object to another
– atomic (non-interruptible)
– may cause object to make a transition between states

Architectural Thinking for Intelligent Systems: UML44

© DFKI - JK

Transitions

 A transition is an response to an external event received
by an object in a given state

– May invoke an operation, and cause the object to
change state

– May send an event to an external object
– Internal transitions are part of the triggered operations of

a state
– External transitions label arcs between states

Architectural Thinking for Intelligent Systems: UML45

© DFKI - JK

Operations and Activities

Operation
– Atomic action invoked by a transition

• Entry and exit operations can be associated with states

Activity
– Ongoing operation that takes place while object

is in a given state
• Modelled as “internal transitions” labelled with the

pseudo-event do

Architectural Thinking for Intelligent Systems: UML46

© DFKI - JK

Nested Statechart

Architectural Thinking for Intelligent Systems: UML47

© DFKI - JK

Concurrent Substates

Architectural Thinking for Intelligent Systems: UML48

© DFKI - JK

Activity Diagram: Resolve an issue in software design

Architectural Thinking for Intelligent Systems: UML49

© DFKI - JK

USING UML

Architectural Thinking for Intelligent Systems: UML50

© DFKI - JK

Perspectives

 Conceptual
– Represent domain concepts: Ignore software issues

 Specification
– Focus on visible interfaces and behavior: Ignore internal

implementation

 Implementation
– Document implementation choices: Most common, but

least useful perspective(!)

Architectural Thinking for Intelligent Systems: UML51

© DFKI - JK

More Than Creating Blueprints

 Create Use Case diagrams to reason about the desired
behavior of your system

 Specify the vocabulary of your domain using class
diagrams

 Specify the sentences of your domain using component
and package diagrams

 Use sequence diagrams, statechart diagrams and
activity diagrams (or BPMN) to show the way the things in
your domain work together to carry out this behavior

Architectural Thinking for Intelligent Systems: UML52

© DFKI - JK

OUTLOOK

Architectural Thinking for Intelligent Systems: UML53

© DFKI - JK

UML Tools

– StarUML
• Sophisticated standalone software modeler

– draw.io
• Online draw app

– UMLet
• Standalone or Eclipse Plugin

– yEd
• Standalone graph editor

– astah UML
• Lightweight UML diagramming tool

– Microsoft Visio
• Diagramming and vector graphics application

Architectural Thinking for Intelligent Systems: UML54

http://staruml.io/
https://draw.io/
https://www.umlet.com/
https://www.yworks.com/products/yed
http://astah.net/editions/uml-new
https://products.office.com/en-ww/visio/flowchart-software

© DFKI - JK

Further Reading

Architectural Thinking for Intelligent Systems: UML55

© DFKI - JK

Summary

 UML 2.5 in a nutshell
– The general purpose of UML
– Several diagram types for different tasks
– The different notations depending on the diagram
– The semantics of these diagrams

 Beeing able to use UML to model
– Classes, Packages, States, «Control Flow» , etc.

Architectural Thinking for Intelligent Systems: UML56

© DFKI - JK

Some Working Questions
1. What was the motivation behind UML?

2. Which UML diagrams exist and what are they used for?

3. Can diagram type X be used to model thing Y in a domain?

4. How can you use diagram X to model a problem description Y
(See assignment)

Architectural Thinking for Intelligent Systems: UML57

	Modeling for Architects I:�UML
	References & Special Thanks
	Agenda
	Views and Diagrams
	Learning Objectives
	What is UML?
	UML (in a nutshell)
	Why UML?
	Purpose of UML
	Maps of Your System
	UML 2.5 Hierarchy from Paulo Merson
	Structural Diagram Types
	Class Diagram – building blocks of object-oriented systems
	Class Diagram Focus on Behavior
	Class Diagram UML 2.5 Reference
	Interfaces
	Objects
	Associations
	Aggregation vs. Composition
	Generalization
	Why Inheritance?
	Generalization Expresses…
	Component Diagram
	Components Could Represent…
	Component Notation
	Components Notation: Ports
	Components: Parts and Connectors
	Components: Assembly Connectors
	Components: Delegation Connector
	Component Diagram: A Reference
	Packages Notation
	Package Diagram: A Reference
	Package Diagram: Design Pattern known as Transfer Obj.
	Deployment Diagram
	Behavioral Diagram Types
	Use Case Diagram
	Using Use Case Diagrams
	Sequence Diagram
	Using Sequence Diagrams
	Asynchrony and Constraints in Sequence Diagrams
	State Diagram
	State Diagram: States and Events
	Transitions
	Operations and Activities
	Nested Statechart
	Concurrent Substates
	Activity Diagram: Resolve an issue in software design
	Using UML
	Perspectives
	More Than Creating Blueprints
	Outlook
	UML Tools
	Further Reading
	Summary
	Some Working Questions

