
Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Elements of DSAI
AlphaGo Part 1: Introduction, Single-Agent Search

Search & Learn: A Recipe for AI Action Decisions

Jörg Hoffmann

Winter Term 2019/20

Hoffmann Elements of DSAI Introduction, Single-Agent Search 1/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Game Playing

Why AI Game Playing?

Playing a game well is commonly viewed to require a form of
“intelligence”.

Games capture a pure form of competition between opponents.

Games are abstract and precisely defined, thus very easy to formalize
and implement in a computer.

→ Game playing is one of the oldest topics in AI.

→ The dream of a machine that plays Chess is much older than AI!

Hoffmann Elements of DSAI Introduction, Single-Agent Search 3/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Why is Game Playing Hard?

Number of possible board positions: (let’s do some combinatorics)

Choose position for white king: 64

Choose position for white queen: 63

2 positions for bishops (Läufer):
(
62
2

)
Knights (Springer)

(
60
2

)
, rooks (Türme)

(
58
2

)
8 positions for pawns (Bauern):

(
56
8

)
Similar for black pieces on 48 remaining squares.

→ 4.6 ∗ 1042. But that’s just those positions where all pieces are present!

Estimated number of legal positions: ca. 1043 (estimated number of
atoms in the universe: 1082).

Hoffmann Elements of DSAI Introduction, Single-Agent Search 4/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Why is Game Playing Hard?

Number of possible board positions:

3 possibilities per square: white, black,
empty

19 ∗ 19 = 361 squares

→ 3361 ≈ 1.7 ∗ 10172. (Reminder: 1082 atoms in the universe.)

Number of legal positions: ca. 10171 (actually it’s

20816819938197998469947863334486277028652245388453054842563945682092741

961273801537852564845169851964390725991601562812854608988831442712971531

9317557736620397247064840935, see https://tromp.github.io/go/legal.html)

Hoffmann Elements of DSAI Introduction, Single-Agent Search 4/48

https://tromp.github.io/go/legal.html

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

State of the Art, 1 B.A. (before AlphaGo)

Checkers (Dame): Since 1994, “Chinook” is world champion.
In 2007, it was shown to be unbeatable: Checkers is solved, we
know the optimal game strategy.

Chess: In 1997, “Deep Blue” beat Garry Kasparov.

6 games, final score 3.5 : 2.5.

Specialized Chess hardware, 30 nodes with
16 processors each.

Nowadays, standard PC hardware plays at
world champion level.

Go: Best computer players (“Zen”, “Mogo”, “Crazystone”) at the
level of good amateurs, using sampling-based search methods.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 5/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Computer Chess: Famous Quotes

Claude Shannon (1949)

The chess machine is an ideal one to start with, since

1 the problem is sharply defined both in allowed operations (the moves) and
in the ultimate goal (checkmate),

2 it is neither so simple as to be trivial nor too difficult for satisfactory
solution,

3 chess is generally considered to require thinking for skilful play, [. . .]

4 the discrete structure of chess fits well into the digital nature of modern
computers.

Alexander Kronrod (1965)

Chess is the drosophila of Artificial Intelligence.

→ For those not in the know: “drosophila” = fruit fly, a species heavily used for
research in genetics.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 6/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Computer Chess: Another Famous Quote

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said, “Chess is
the Drosophila of artificial intelligence.”

However, computer chess has developed much as genetics might have if
the geneticists had concentrated their efforts on breeding racing
Drosophilae. We would have some science, but mainly we would have
very fast fruit flies.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 7/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Very Fast Fruit Flies, 1 B.A.

Computer Chess: (mostly similar in other games)

Exhaustive search (Alpha-Beta, see later).

Fast game-position evaluation functions, fine-tuned by human
experts and training.

Large database of known game positions for drawing analogies (from
2 million games, in 1997).

Very large game opening databases.

Very large game termination databases.

Fast hardware.

→ A mixture of (a) very fast search and human expertise. Learning plays
only a minor role!

Hoffmann Elements of DSAI Introduction, Single-Agent Search 8/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

State of the Art, 3 A.A. (Anno AlphaGo)

AlphaGo, March 2016:
https://www.netflix.com/de-en/title/80190844

AlphaGo beats Lee Sedol (winner of 18 world titles).

Sampling-based search with guidance information from neural networks
(NN), trained by expert data and self-play.

AlphaGo Zero, early 2017:
https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaGo Zero beats AlphaGo using NN trained without expert data.

Attention: Training time in “days” requires Google computing power!
Intensely computation-expensive but massively parallelizable.

AlphaZero, late 2017:
https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/

AlphaZero beats world-class computer players in Go, chess, and shogi.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 9/48

https://www.netflix.com/de-en/title/80190844
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Agenda: Search Algorithms in Single-Agent Setting

Search Trees: What do we mean by “search” here?

→ We look at an example to illustrate the concept.

Blind Search: How to explore the search tree?

→ Simple algorithms first (we’ll be quick on this).

Heuristic Search: How to explore the search tree intelligently?

→ The simple algorithms usually don’t work. We need to inform the
search about where it is promising to explore. Here’s how.

Monte-Carlo Tree Search (MCTS): Can we explore the search
tree more sparsely?

→ Sampling into the bargain. Recent successes, including AlphaGo.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 10/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Positioning in the DSAI Phase Model

Hoffmann Elements of DSAI Introduction, Single-Agent Search 11/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

A Single-Agent Search Problem

→ Problem: Find a route to Moscow.

Starting from an initial state . . . (SB)
. . . apply actions . . . (Using a road segment)
. . . to reach a goal state. (Moscow)
Performance measure: Minimize summed-up action costs. (Road
segment lengths)

Hoffmann Elements of DSAI Introduction, Single-Agent Search 13/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Another Single-Agent Search Problem (The “15-Puzzle”)

→ Problem: Move tiles to transform left state into right state.

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Starting from an initial state . . . (Left)
. . . apply actions . . . (Moving a tile)
. . . to reach a goal state. (Right)
Performance measure: Minimize summed-up action costs. (Each
move has cost 1, so we minimize the number of moves)

Hoffmann Elements of DSAI Introduction, Single-Agent Search 14/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Single-Agent Search Problems

Restricted environment: (yet practical applications, see next slide)

Single-agent.

Finite numbers of states and actions (in particular: discrete).

Fully observable (agent knows everything).

Deterministic (each action has only one outcome).

Static (if the agent does nothing, the world doesn’t change).

→ All of these restrictions can be removed. For example, many of the
basic ideas generalize easily to two-player zero-sum games.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 15/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Single-Agent Search Applications

Just to name a few:

Route planning (e.g. Google Maps).

Detecting bugs in software and hardware.

Non-player-characters in computer games.

Robot assembly sequencing. Planning of the assembly of complex
objects. Actions = robot activities.

Attack planning. Finding a hack into a secured network. Used for
regular security testing. Actions = exploits.

Query optimization in databases. Actions = rewriting operations.

Sequence alignment in Bioinformatics. Actions = re-alignment
operations.

Natural language sentence generation. Actions = add another word
to a partial sentence.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 16/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

How to Search?

Start at the initial state. Then, step-by-step, expand a state by
generating its successors . . . → Search space.

03/23

General Search

From the initial state, produce all successive states step
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

Hoffmann Elements of DSAI Introduction, Single-Agent Search 17/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

An Example Search Space: The “8-Puzzle”

etc. . . . (Blackboard)

Hoffmann Elements of DSAI Introduction, Single-Agent Search 18/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Breadth-First Search and Depth-First Search

Breadth-First Search: Expand nodes in the order they were generated.

Depth-First Search: Always expand the most recently generated node.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 20/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Algorithm Properties

Breadth-First Search:

Does this guarantee to find a solution if there is one? Yes.

Does this provide a guarantee on solution quality? Always finds a
shortest solution.

Depth-First Search:

Does this guarantee to find a solution if there is one? No, because
search branches may be infinitely long (cycles).

Does this provide a guarantee on solution quality? Trivially no.

→ There are many more algorithms improving over these in a variety of
ways. See, for example, [Russell and Norvig (2010)].

Hoffmann Elements of DSAI Introduction, Single-Agent Search 21/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

(Not) Playing Stupid

→ Problem: Find a route to Moscow.

“Look at all locations 10km distant from SB, look at all locations
20km distant from SB, . . . ” = Breadth-first search.
“Keep following down arbitrary roads until you hit an ocean, then
back up . . . ” = Depth-first search.
“Focus on roads that go the right direction.” = Heuristic search!

Hoffmann Elements of DSAI Introduction, Single-Agent Search 23/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Heuristic Search: Basic Idea

goal
init

cos
t es

tim
ate

h
cost est

imate h

cost estimate h

cost estimate h

→ Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small h(s).

Hoffmann Elements of DSAI Introduction, Single-Agent Search 24/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Some Applications

GPS Robotics

Video Games Security Testing

Hoffmann Elements of DSAI Introduction, Single-Agent Search 25/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Heuristic Functions

Definition: Given a single-agent search problem with states S, a
heuristic is a function h : S 7→ R+

0 .

Intended use:

h estimates the cost of a cheapest path from s to a goal state.

Terminology:

Ancient Greek ευρισκειν (= “I find”); aka: ευρηκα!

Same word often used in CS for “rule of thumb”, “imprecise
solution method”.

How to obtain h?

Goal distance within a relaxed (i.e., simplified) problem.

Or: learn from data, see later (games).

Hoffmann Elements of DSAI Introduction, Single-Agent Search 26/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Heuristic Function from Relaxed Problem: Example

Problem: Find a route from Saarbrücken To Edinburgh.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 27/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Heuristic Function from Relaxed Problem: Example

Relaxed Problem: Throw away the map.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 27/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Heuristic Function from Relaxed Problem: Example

Heuristic function h: Straight line distance.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 27/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

h from Relaxed Problem: Another Example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Problem: Move tiles to transform left state into right state.

Relaxed Problem: Allow to move each tile to any cell (in a single
move), regardless of the situation.

Heuristic function h: Number of misplaced tiles. (Here: 13)

Hoffmann Elements of DSAI Introduction, Single-Agent Search 28/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

h from Relaxed Problem: Another Example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Problem: Move tiles to transform left state into right state.

Relaxed Problem: Allow to move each tile to any neighbor cell,
regardless of the situation.

Heuristic function h: Manhattan distance. (Here: 36)

Hoffmann Elements of DSAI Introduction, Single-Agent Search 28/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Heuristic Functions: Illustration Path Planning

Manhattan Distance, good case:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

14 13 12

131415

16

17

18

15 14

15

16 15

14 13

14 13 12

11 10

1012

11

10

10

9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

910

Hoffmann Elements of DSAI Introduction, Single-Agent Search 29/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Heuristic Functions: Illustration Path Planning

Manhattan Distance, bad case:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

14 13 12

131415

16

17

18

15 14

15

16 15

14 13

14 13 12

10

1012

11

10

10

9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

91017

16

13

12

12

11

11

11

8

8

7 6 5

5

4 3

2

2

11

Hoffmann Elements of DSAI Introduction, Single-Agent Search 29/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Greedy Best-First Search

Search nodes ordered by ascending h:

function Greedy Best-First Search(problem) returns a solution, or failure
node ← a node n with n.State=problem.InitialState
frontier ← a priority queue ordered by ascending h, only element n
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
Insert(n′, h(n′), frontier)

Typically used: duplicates pruning. Insert n′ only if n.State has not
been seen before.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 30/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Greedy Best-First Search: Route to Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Hoffmann Elements of DSAI Introduction, Single-Agent Search 31/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Greedy Best-First Search: Route to Bucharest

Subscripts: h. Red nodes: removed by duplicate pruning.

Arad
366

Sibiu
253

Timisoara
329

Zerind
374

Arad Fagaras
176

Oradea
380

Rimnicu
193

Sibiu Bucharest
0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 31/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

A∗

Ordered by ascending g + h: (g(n) = cost from initial state to n)

function A∗(problem) returns a solution, or failure
node ← a node n with n.State=problem.InitialState
frontier ← a priority queue ordered by ascending g + h, only element n
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
Insert(n′, g(n′) + h(n′), frontier)

Optimal if h is admissible, i.e. never over-estimates the true
cost-to-goal.

Duplicates pruning: possible but must take care to not affect
optimality.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 32/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Performance: A∗ in the 8-Puzzle

Without Duplicate Elimination; d = length of solution:

Number of search nodes generated
Iterative A∗ with

d Deepening Search misplaced tiles h Manhattan distance h

2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 3644035 227 73
14 - 539 113
16 - 1301 211
18 - 3056 363
20 - 7276 676
22 - 18094 1219
24 - 39135 1641

Hoffmann Elements of DSAI Introduction, Single-Agent Search 33/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Empirical Performance: A∗ in Path Planning

Live illustration:

http://qiao.github.io/PathFinding.js/visual/

Hoffmann Elements of DSAI Introduction, Single-Agent Search 34/48

http://qiao.github.io/PathFinding.js/visual/

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Monte-Carlo Sampling

Setting: Online, fixed time budget. Decide which action to take.

Algorithm: Current state s, choose action a
while time not up do

select a transition s
a−→ s′

rollout from s′ until terminal state t
increment #expansions(a), update average reward(a) with reward(t)

return an a for s with maximal average reward(a)

Notes:

Sparse search, rollouts go deep fast.

Guidance information can be injected into “select” and “rollout”.

Rollouts require “terminal state” to be reached in finite number of
transitions. Intrinsic in games; not as clear in general.

“Reward” at terminal state: intrinsic in games; here, based on path
success (goal reached?) and, in the successful cases, plan cost.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 36/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Monte-Carlo Sampling: Illustration

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 37/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Monte-Carlo Sampling: Illustration

40

70 50 30

100

10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 37/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Monte-Carlo Sampling: Illustration

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 37/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Monte-Carlo Sampling: Illustration

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 37/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Monte-Carlo Sampling: Illustration

40

70 50 30

100 10

Expansions: 0, 0
avg. reward: 0, 0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 37/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Monte-Carlo Tree Search (MCTS)

Algorithm: Same, but maintain a search tree T
while time not up do

select actions within T up to a state s′ and s′
a′
−→ s′′ s.t. s′′ 6∈ T

with bias to maximize reward
rollout from s′′ until terminal state t
add s′′ to T
update, from a′ up to root, #expansions and average rewards

return an a for s with maximal average reward(a)
When executing a, keep the part of T below a

Notes:

Search sparsity, information from deep samples, requirement
terminal states and reward: as in Monte-Carlo Sampling.

Action decisions (select) within tree. Maximize reward: exploitation;
only bias, not exclusive: exploration, convergence to optimal choices.

Different strategies/guidance within tree vs. rollouts.

Tree remembers previous work, reduces redundant work later.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 38/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

MCTS: Illustration

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 39/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

MCTS: Illustration

40

70 50 30

100

10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Hoffmann Elements of DSAI Introduction, Single-Agent Search 39/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

MCTS: Illustration

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1
avg. reward: 10

Hoffmann Elements of DSAI Introduction, Single-Agent Search 39/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

MCTS: Illustration

40

70

50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1
avg. reward: 10

Hoffmann Elements of DSAI Introduction, Single-Agent Search 39/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

MCTS: Illustration

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Hoffmann Elements of DSAI Introduction, Single-Agent Search 39/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

MCTS: Illustration

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30

Hoffmann Elements of DSAI Introduction, Single-Agent Search 39/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

MCTS: Illustration

40

70 50 30

100 10

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 0, 1
avg. reward: 0, 50

Hoffmann Elements of DSAI Introduction, Single-Agent Search 39/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

How to Guide MCTS? “Select” and “Sample”

Basic strategy: Exploitation vs. exploration

Exploitation: Actions with high average → Focus on “what works”.

Exploration: Actions not tried a lot yet → Try to find better
solutions.

Balance the two, e.g. UCT [Kocsis and Szepesvári (2006)].

→ Strong link to reinforcement learning: exploitation = “use the action
currently believed to be best”; exploration = “use some other action”.

Additional information: Incorporate search guidance!

Heuristic function: State quality estimate to guide “select” and/or
“rollout”.

Approximate policy (action-choice function): Same, as
action-selection bias.

Based on problem relaxations (→ no training phase needed), or on
learning (→ reinforcement learning across search iterations).

Hoffmann Elements of DSAI Introduction, Single-Agent Search 40/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Summary

Game playing is a traditional benchmark for AI. The AlphaGo/Zero
line of works has dramatically advanced the state of the art, but
there are many challenges still.

The success of AlphaGo is based on a combination of search with
learned search guidance.

Single-agent search problems require to find a path of actions
leading from an initial state to a goal state.

Heuristic functions h map states to an estimate of goal distance.
Greedy best-first search and A∗ use h for ordering search nodes.

Monte-Carlo tree search (MCTS) is a sparse form of search, going
deep through rollouts. One needs to balance exploitation vs.
exploration, similarly as in reinforcement learning. Heuristic
functions and approximate policies can be integrated/learned.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 42/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Reading

Chapter 3: Solving Problems by Searching, Sections 3.1 – 3.4 [Russell and
Norvig (2010)].

Content: Covers search trees and blind search in more detail.

Chapter 3: Solving Problems by Searching, Sections 3.5 and 3.6 [Russell
and Norvig (2010)].

Content: Covers heuristic search in more detail.

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Content: Quite a nice read giving lots of background. (MCTS is not
covered by Russel/Norvig yet)

Trial-based Heuristic Tree Search for Finite Horizon MDPs [Russell and
Norvig (2010)].

Content: Nice overview paper systematizing the space of MCTS-style
algorithms in (probabilistic) AI Planning.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 43/48

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Quiz: Video Games

Quiz

When was the first game-playing computer built?

(A): 1941

(C): 1958

(B): 1950

(D): 1965

→ In 1941, a small box beat humans at Nim (take away objects from heaps,
player taking the last object looses).

Quiz

Does the video game industry attempt to make the computer
opponents as intelligent as possible?

(A): Yes (B): No

→ In some cases, yes (I suppose). In general, no. For example, in Ego-Shooter
games, if your computer opponents did the best they can, you’d be shot
immediately and always (similar: Rambo movies et al).

Hoffmann Elements of DSAI Introduction, Single-Agent Search 45/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Quiz: Gorillas and Koalas

Quiz

How to solve this?

1. 1K,1G; 2. 1K; 3. 2K; 4.
1K; 5. 1K,1G.

Quiz

And this?

Video: http://www.youtube.

com/watch?v=W9NEWxabGmg

Hoffmann Elements of DSAI Introduction, Single-Agent Search 46/48

http://www.youtube.com/watch?v=W9NEWxabGmg
http://www.youtube.com/watch?v=W9NEWxabGmg

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

Quiz: Heuristic Error in the Blocksworld

n blocks, 1 hand.

A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

The goal is a set of statements “on(x,y)”.

Quiz

Consider h := number of goal statements that are not currently
true. Is the error (difference from true goal distance) bounded by
a constant?
(A): Yes. (B): No.

→ No. There are examples where the error grows linearly in n. Example:
Block b1 is currently beneath a stack of bn, . . . , b2 and the goal is
on(b1, b2). Then h(s) = 1 but true goal distance is n as we have to move
bn, . . . , b2 away first.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 47/48

Introduction Search Trees Blind Heuristic Search MCTS Summary Quiz References

References I

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In
Proceedings of the 17th European Conference on Machine Learning (ECML 2006),
volume 4212 of Lecture Notes in Computer Science, pages 282–293, 2006.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). 2010.

Hoffmann Elements of DSAI Introduction, Single-Agent Search 48/48

	Introduction
	

	Search Trees
	

	Blind Search
	

	Heuristic Search
	

	Monte-Carlo Tree Search (MCTS)
	

	Summary
	

	Quiz
	

	References

