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Competitive Agents?

Quote AI Introduction: “Single agent vs. multi-agent: One agent or
several? Competitive or collaborative?”

→ Single agent!

Several koalas, several gorillas trying to beat these up.

BUT there is only a single acting entity – one player decides which
moves to take (who gets into the boat).
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Competitive Agents!

Quote AI Introduction: “Single agent vs. multi-agent: One agent or
several? Competitive or collaborative?”

→ Multi-agent competitive!

TWO players deciding which moves to take.

Conflicting interests.
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Agenda: Game Search, AlphaGo Architecture

Games: What is that?

→ Game categories, game solutions.

Game Search: How to solve a game?

→ Searching the game tree.

Evaluation Functions: How to evaluate a game position?

→ Heuristic functions for games.

AlphaGo: How does it work?

→ Overview of AlphaGo architecture, and changes in Alpha(Go)
Zero.
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Positioning in the DSAI Phase Model
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Which Games?

→ No chance element.
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Which Games?

→ Exactly two players.
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Which Games?

→ Game state fully observable.
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Which Games?

→ Player utilities are diametrically opposed.
(Else: game theory, equilibria, auctions, . . . )
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These Games!

Restrictions:

The game state is fully observable.

The outcome of each move is deterministic.

Game states discrete, finite number of possible moves and game
states.

There are no infinite runs of the game: a terminal state is always
reached after a finite number of steps.

Two-player zero-sum game: two players, terminal states have utility
with utility(player1) = −utility(player2).

Our formulation (equivalent): single utility function u, players Max
vs. Min trying to maximize vs. minimize u.

Turn-taking: Players move alternatingly. Max begins.
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Game State Space

Game State Space:

States S consist of SMax Max to move, SMin Min to move, ST

terminal states.

Actions A consist of AMax and AMin.

→ a ∈ AMax applicable only in SMax, outcome state in SMin ∪ ST .
Symmetrically for a ∈ AMin.

Utility function u: ST 7→ R.

Players Max vs. Min: White vs. Black.

States: Board position + who’s to move.

Terminal states: Checkmate, Stalemate.

Actions: Moves according to rules.

Utility function: +100 if Black is checkmated,
0 if stalemate, −100 if White is checkmated.
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Why is Game Playing Hard?

Reminder: Chess |S| ≈ 1043, Chess |S| ≈ 10171, number of atoms in the
universe ≈ 1082.

→ But that’s not even the worst part! FreeCell |S| ≈ 1067 yet FreeCell is
much easier to solve than Chess.

What is a “solution”?

Single-agent search problem: Path from initial state to goal state.

(Two-player zero-sum turn-taking) game: An action policy (= game
strategy), reacting to all possible opponent moves!

→ For Max: function σMax : SMax 7→ AMax. Max policy optimal
if it maximizes u assuming perfect Min play.

→ Computing an optimal policy is typically infeasible. Instead, compute
the next move on demand, given the current game state.
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Game Search Tree: Example Tic-Tac-Toe
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The Minimax Algorithm

Input: State s ∈ SMax, in which Max is to move.

function Minimax-Decision(s) returns an action
v ← Max-Value(s)
return an action a ∈ Actions(s) yielding value v

function Max-Value(s) returns a utility value
if Terminal-Test(s) then return u(s)
v ← −∞
for each a ∈ Actions(s) do

v ← max(v,Min-Value(ChildState(s, a)))
return v

function Min-Value(s) returns a utility value
if Terminal-Test(s) then return u(s)
v ← +∞
for each a ∈ Actions(s) do

v ← min(v,Max-Value(ChildState(s, a)))
return v
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Minimax: Example

Notation: blue: u value on terminal states; red: non-terminal state
value as computed by Minimax.

Max 3

Min 3

L

3 12 8

Min 2

M

2 4 6

Min 2

R

14 5 2

→ Which action is returned? L. Maximal utility is higher for R; but
assuming perfect Min play, L is better. Choosing R would rely on the
opponent to do something stupid.
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Minimax, Pro and Contra

Pro:

Returns an optimal action, assuming perfect opponent play.

Extremely simple.

Contra:

Completely infeasible (search tree way too large).

Remedies:

Alpha-beta pruning reduces search yet preserves optimality (not
covered here).

Limit search depth, apply evaluation function at cut-off states.

Sparse search (MCTS) instead of exhaustive search.
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Minimax With Depth Limit: Example

Notation: blue: evaluation function value on cut-off states; red:
non-cut-off state value as computed by Minimax with depth limit 2.

Max 3

Min 3

L

3 12 8

Min 2

M

2 4 6

Min 2

R

14 5 2

→ Search pretends that states at depth limit d (number of actions i.e.
half-moves) are terminal; requires evaluation function to estimate their
values (see next section).
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MCTS, Action Choice for Max

Two-Player Zero-Sum MCTS: (change in red)
while time not up do

select actions within T up to a state s′ and s′
a′−→ s′′ s.t. s′′ 6∈ T ,

with bias to maximize (minimize) reward in Max (Min) nodes
rollout from s′′ until terminal state t
add s′′ to T
update, from a′ up to root, #expansions and average rewards with u(t)

return an a for s with maximal average reward(a)
When executing a, keep the part of T below a

Notes:

With suitable selection bias (e.g. UCT [Kocsis and Szepesvári
(2006)]), action decisions in tree converge to optimal.
⇒ Rewards converge to Minimax values.

Sparse deep search = “focus on most relevant moves”.
⇒ Horizon problem not as critical. (May fall prey to “traps” though
[Ramanujan et al. (2010)].)
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Evaluation Functions

Definition: Given a game with states S, a (heuristic) evaluation function
is a function h : S 7→ R.

h estimates the expected utility of s. (In particular, we can use
h := u on terminal states)

In Minimax: Impose depth limit, use h at (non-terminal) cut-off
states.

In MCTS: Use h as part of the state-value estimates. (e.g. AlphaGo:
leaf state value estimate is linear combination of h and rollouts)

How to obtain h?

Relaxed game? Possible in principle, too costly in practice.

Encode human expert knowledge.

Learn from data.
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Position Evaluation in Chess

Material: Pawn (Bauer) 1, Knight
(Springer) 3, Bishop (Läufer) 3, Rook
(Turm) 5, Queen (Dame) 9.
→ Rule of thumb:
3 points advantage =⇒ safe win.

Mobility: How many fields do you
control?

King safety, Pawn structure, . . .
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Linear Feature-Based Evaluation Functions

Functions taking the form:

h(s) := w1f1(s) + w2f2(s) + · · ·+ wnfn(s)

fi are features, wi are weights.

How to obtain such functions?

Features fi designed by human experts.

Weights wi set by experts, or learned automatically (see later).

Discussion: Pro/Con

Very fast. (Unless there are many features or computing their value
is very expensive)

Very simplistic. For example, assumes that features are independent.
(But, e.g., value of Rook depends on Pawn structure)

Human knowledge crucial in design of features.
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Feature-Based Evaluation in Chess

Material: Pawn (Bauer) 1, Knight
(Springer) 3, Bishop (Läufer) 3, Rook
(Turm) 5, Queen (Dame) 9.
→ Rule of thumb:
3 points advantage =⇒ safe win.

Mobility: How many fields do you
control?

King safety, Pawn structure, . . .

→ h(s) = ∆pawn(s) + 3 ∗∆knight(s) + 3 ∗∆bishop(s)+
5 ∗∆rook(s) + 9 ∗∆queen(s) (∆: #White−#Black)

+wkkingsafety(s) + wppawnstructure(s)?
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Supervised Learning of Evaluation Functions

Human expert annotates states with evaluation-function value
⇒ standard supervised learning problem.

Set of annotated states, i.e., state/value pairs (s, v).

Learn ML model that predicts output v from input s.

Possible ML methods: arbitrary . . .

Classic approach: learn weights in feature-based evaluation function.

Recent breakthrough successes: neural networks!
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Policies & Supervised Learning

Definition: Given a game with Max states SMax and actions AMax, a
Max policy is a function pMax : SMax 7→ AMax; symmetrically for Min.
By p, we denote a (combined) policy for both players. A probabilistic
policy returns a probability distribution over actions instead.

An optimal policy captures perfect play from both players.

(Probabilistic) policies can be used as search guidance in MCTS:
action selection in tree, action selection in rollouts.

Supervised learning of policies:

Human expert annotates states with preferred moves
⇒ standard supervised classification problem.

Way more natural for humans; side effect of expert game play.

e.g. KGS Go Server: 30 million positions with expert moves, used
for training in AlphaGo.
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Learning from Self-Play

Self-play for reinforcement learning:

Repeat: play a game using the current h and/or p; at each step (st, at)
along the game trace, reinforce the game outcome in h and/or p.

Evaluation function learning: update weights in h to reduce the
error h(st)− game-outcome-value.

Probabilistic policy learning: update weights in p to increase (game
won)/decrease (game lost) the likelihood of choosing at in st.

Self-play to generate data for supervised learning:

Fix policy p. Repeat: play game using p; annotate the states in each
game trace with the game outcome value.

Use this data for supervised learning of evaluation function.

Might sound strange, but actually successful: used in AlphaGo.
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Reminder: 3 A.A. (Anno AlphaGo)

AlphaGo, March 2016:

beats Lee Sedol (winner of 18 world titles).

MCTS guided by neural networks (NN), trained by expert data and
self-play.

AlphaGo Zero, early 2017:

beats AlphaGo using NN trained without expert data.

AlphaZero, late 2017:

beats world-class computer players in Go, chess, and shogi.

. . . and now: the details! (some of them :-)
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Learning in AlphaGo

Illustration: (taken from [Silver et al. (2016)])

SL policy network pσ: Supervised learning from human expert data (cf. slide 25).

Rollout policy pπ: Simple but fast version of pσ (linear feature based function for
each action, cf. slide 22; combined by softmax).

RL policy network pρ: Start with pσ, improve by reinforcement learning from
self-play (cf. slide 26).

Value network vθ: Supervised learning, training data generated by self-play using
pσ (cf. slide 26).
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MCTS in AlphaGo

Illustration: (taken from [Silver et al. (2016)])

SL policy network pσ: Action choice bias (along with average value Q) within
the tree (“P”, gets smaller to “u(P )” with number of visits).

Rollout policy pπ: Action choice in rollouts.

RL policy network pρ: Not used here (used only to learn vθ).

Value network vθ: Used to evaluate leaf states s, in weighted linear sum with the
value returned by a random sample on s.
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Neural Networks in AlphaGo

(Illustration and text taken from [Silver et al. (2016)])

Architecture from image classification: convolutional NN, softmax at end.

“Image” = game board, multiple feature planes encoding game rules (stone
liberties etc.) visually.

Size “small” compared to recent results in image classification (cf. Bernt
Schiele’s lectures): Work done in 2014–2016, leveraging NN architecture of that
time. This changes next . . .
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Learning in AlphaGo Zero

Illustration: (taken from [Silver et al. (2017)])

Self-play:

Game: MCTS guided by
current neural network.

Learning: update weights
to reduce error of v, and
to move p closer to action
πi chosen by MCTS.

MCTS controls
exploitation vs. exploration
trade-off for reinforcement
learning.

Single neural network fθ:

Output (p, v): move
probabilities p, value v.
→ Probabilistic policy and
evaluation function.

Residual blocks [He et al.
(2016)], much improved
performance.
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MCTS in AlphaGo Zero

Illustration: (taken from [Silver et al. (2017)])

Basically as in AlphaGo.

Except: No rollouts! Leaf-state evaluation = NN output v.

→ Monte-Carlo tree search without “Monte-Carlo” :-) . . . like a
heuristic search with MCTS-style node-expansion strategy.
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Neural Network (Singular!) in AlphaGo Zero

(Illustration and text taken from [Silver et al. (2016)])

Architecture from more recent image classification works: now including residual
blocks! → Enables much deeper network.

Evaluation function and policy are just different “heads” to the same network.

19 vs. 39 residual blocks: 19 in an initial system version; 39 in the final version.

→ Keys to success: 1. Integration of reinforcement learning with MCTS. 2. Leveraging
recent NN architectures, in particular residual blocks.
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Changes in AlphaZero

AlphaGo Zero with relatively small changes . . .

No symmetry handling (applies only to Go).

Various smallish details/parameters in configurations.

. . . generalizes very well to chess and shogi:
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Across AlphaGo/Zero: NN Input/Output Representation

AlphaZero:

Input: “N ×N × (MT + L) image stack . . . each set of planes
represents the board position at a time-step . . . “.

Output: “move in chess . . . 8× 8× 73 stack of planes . . . first 56
planes represent possible queen moves for any piece . . . ”.

→ Image-like representation of both, game state and moves. Crucial for
success of NN methods originating in image classification.

AlphaGo Zero and AlphaGo:

Similar.

Just easier for Go than for chess and shogi.

Hoffmann Elements of DSAI Game Tree Search, Learning Architectures 36/49



Introduction Games Game Search Evaluation Fns AlphaGo/Zero Summary Quiz References

AlphaGo/Zero: Conclusion

Amazing progress!

→ “Search & Learn NN” seems a great recipe for AI action decisions.

I expect lots of research on this in the coming years – in my own research
group amongst many others.

Limitations: Beyond (board) games?

1 How well does this generalize to problems with no image-like
structure? With incomplete information? Multiple agents? Where
random play does not produce interesting data?

2 How to find “the right” hyperparameters (NN architecture etc)?
Especially without > 20 full-time researchers and “5000
first-generation tensor processing units (TPUs)”?

3 In many problems, generating training data is not easy (“mild”
example: autonomous driving; extreme example: NASA).
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Beyond Board Games: Progress on Limitation 1

StarCraft: [Vinyals et al. (2019)]

Game map (≈ board) plus other lists/sets data (unit attributes etc).
→ “Scatter connections” in NN architecture.

Incomplete information, need move history to judge game state.
→ LSTM NN architecture (as in natural language processing).

Multiple collaborative and competitive agents.
→ Multi-agent self-play learning (each agent separate NN).

Random play does not produce interesting strategies (hence self-play
reinforcement learning insufficient on its own).
→ Human knowledge (supervised learning and more).

Generalization beyond StarCraft unclear at this point.

OpenAI Dota: Related techniques; details not (yet?) available.
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Summary

Games involve several agents with (partially) conflicting utilities. Chess
and Go are immensely complex, but belong to the simplest class of games:
finite states, finite runs, fully observable, two-player, turn-taking, zero-sum.

The Minimax algorithm solves such games exactly, but is infeasible in
practice. MCTS can be applied by maximizing (minimizing) reward in
Max (Min) nodes.

Evaluation functions h estimate expected game-state utility. Traditional
designs are feature-based, but h can be learned through supervised learning
or reinforcement learning in self-play. Probabilistic policies approximate
action choices, and can be learned through these same methods.

The AlphaGo/Zero system family combines MCTS with evaluation
functions and probabilistic policies represented as neural networks.

AlphaGo involved many engineering tricks. AlphaGo simplified this, and
that simplification generalizes to chess and shogi in AlphaZero.

→ “Search & Learn NN” seems a great recipe for AI action decisions.
Potentially way beyond board games!
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Reading

Chapter 5: Adversarial Search, Sections 5.1 – 5.4 [Russell and
Norvig (2010)].

Content: Easy-to-read treatment of classical game-playing
algorithms. Nothing about MCTS though, nor about learning
evaluation functions/probabilistic policies.
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Reading

Mastering the game of Go with deep neural networks and tree
search [Silver et al. (2016)].

Content: The AlphaGo paper. I would not recommend reading the
“METHODS” part (which compactly describes many technical
details) in your first term. But the main/front part is reasonably
easy to read and gives a nice overview of the system and results.

Mastering the game of Go without human knowledge [Silver et al.
(2017)].

Content: The AlphaGo Zero paper. Remarks similar to previous.

A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play [Silver et al. (2018)].

Content: The AlphaZero paper. Remarks similar to previous (the
technical details here are in the “Supplementary Materials”).
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Quiz: Winners and Losers in Tic-Tac-Toe

Tic-Tac-Toe.

Max = x, Min = o.

Max wins: u = 100; Min wins: u = −100;
stalemate: u = 0.

Quiz

What’s the Minimax value for the state shown above? (Note:
Max to move)

(A): 100 (B): −100

→ 100: Max moves; choosing the top left corner, it’s a certain win for Max.

Quiz

What’s the Minimax value for the initial game state?

(A): 100 (B): −100

→ 0: Given perfect play of both opponents, Tic-Tac-Toe always results in a stalemate.
(Seen “War Games”, anybody?)
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Quiz: The Horizon Problem

Black to move

Quiz

Who’s gonna win here?

(A): White (B): Black

White wins (Pawn cannot be prevented
from becoming a queen.)

Black has a +4 advantage in material,
so if we cut-off here then our evaluation
function will say “−100, black wins”.

The loss for black is beyond our horizon
unless we search extremely deeply:
Black can hold off the end by repeatedly
giving check to White’s king.

→ In other words: Minimax is not robust to
inaccurate cut-off evaluations.
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Quiz: Feature-Based Evaluation in Chess???

White to move.

h(s) = ∆pawn(s) +
3 ∗∆knight(s) + 3 ∗∆bishop(s) +
5 ∗∆rook(s) + 9 ∗∆queen(s).

(∆: #White−#Black)

Quiz

Say Minimax with depth limit d uses h at cut-off states. Which move
does it choose in this state with d = 1 i.e. considering only the first
action? For which values of d does it choose the best action?

→ With d = 1, Minimax chooses to capture the black bishop due to the
superior material advantage.

→ The best action is to capture the black pawn, as this is the only way to
prevent it from turning into a queen. To see this, we need d ≥ 4.
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