
Databases 2
Elements of Data Science and Artificial Intelligence

Prof. Dr. Jens Dittrich

bigdata.uni-saarland.de

January 20, 2020

Prof. Dr. Jens Dittrich Databases 2 1 / 23

http://bigdata.uni-saarland.de

The Key Questions with Google Maps (1/2)

Key questions: for this concrete application (Google Maps):

1. How to store, access, and
query data?

where and how to store and cache the data?

The how-part of the question has a lot to do with how to transfer data in-between different
layers of the storage hierarchy.

Prof. Dr. Jens Dittrich Databases 2 2 / 23

CPU vs I/O, a Performance Primer

the graph shows the runtime of different algorithms,
see the Jupyter Notebook “CPU vs IO, a Performance Primer.ipynb” for details

Prof. Dr. Jens Dittrich Databases 2 3 / 23

The Two Benefits of Data Compression

Recall our walking to Hawaii-example:

Access time ∼ how long does it take us to walk to Hawaii and back,
i.e. how long does it take for the first Byte to reach Saarbrücken

Bandwidth ∼ how much can we carry on our trip, i.e. how many bytes of data can be
transferred in a given time interval

How can we make better use of the available bandwidth?

Compress to Save Bandwidth

We compress data in order to save bandwidth while transferring data in-between storage layers.

Do not confuse this with:

Compress to Save Storage Space

We compress data in order to save space on a particular storage layer.

Prof. Dr. Jens Dittrich Databases 2 4 / 23

Fa
ct

or
 3

,7
50

,0
00

“hard disk is like

walking from Saarland to Hawaii.“

7,500,000 seconds of walking!

= 86.8 days!

Examples

uncompressed (bmp, tga, raw) vs compressed image (RLE, png, jpg, etc.)

uncompressed (wav) vs compressed music (mp3)

uncompressed (raw) vs compressed video (mpeg-4)

uncompressed (data in a database) vs compressed data (compressed database or query
results)

run-length-encoding (RLE): blackboard

The images provided by Open Street Map (the open variant of Google Maps) use png.

Prof. Dr. Jens Dittrich Databases 2 5 / 23

Transfer Time without Compression

Transfer Time without compression

The overall transfer time to send n Bytes of data from storage layer x to storage layer y
without compression is:

Ttruc(n) = Ttr (n) = n/BW

Here BW is the bandwidth between storage layers x and y in [GB/sec]

Note

In this and the following definitions we assume that the time to read data on storage layer x
and then write that data on storage layer y is not the bottleneck.
In other words: the following arguments make sense if the transfer is the bottleneck.

Example:

The transfer time for 1 TB of data without compression and BW = 10GB/sec is
Ttr = 1000/10 [GB

GB/sec] = 100 [1
1/sec] = 100 sec .

Prof. Dr. Jens Dittrich Databases 2 6 / 23

Transfer Time with Compression

Transfer Time with compression

The overall transfer time to send n Bytes of data from storage layer x to storage layer y with
compression is:

Ttrc(n) = Tcompress(n) + Ttr (nc) + Tdecompress(nc)

here Tcompress(n) is the time required to compress the n Bytes into nc Bytes,
here Tdecompress(nc) is the time required to decompress the nc Bytes back into n Bytes,

Compression Benefit Sweet-spot

Compressing data to save bandwidth only makes sense if Ttrc(n) < Ttruc(n). Whether this
equation holds depends on:

1. the data compression ratio n/nc , and

2. the runtime of the compression algorithm, i.e. Tcompress(n), and

3. the runtime of the decompression algorithm, i.e. Tdecompress(n).

Prof. Dr. Jens Dittrich Databases 2 7 / 23

Examples

The transfer time for 1 TB of data and BW = 10GB/sec

Without Compression:

Ttruc = 1000/10 [GB
GB/sec] = 100 [1

1/sec] = 100 sec . (as above)

With Expensive Compression:

Tcompress(n) = 1 GB/sec , Tdecompress(n) = 5 GB/sec , compression ratio n/nc = 5

Ttrc(n) = Tcompress(1000 GB) + Ttr (200 GB) + Tdecompress(200 GB)
= 1000 sec + 20 sec + 40 sec = 1060 sec > Ttruc = 100sec

With Inexpensive Compression:

Tcompress(n) = 50 GB/sec , Tdecompress(n) = 100 GB/sec , compression ratio n/nc = 3

Ttrc(n) = Tcompress(1000 GB) + Ttr (333 GB) + Tdecompress(333 GB)
= 20 sec + 33.3 sec + 3.3 sec = 56.6 sec < Ttruc = 100sec

Prof. Dr. Jens Dittrich Databases 2 8 / 23

Survey

How can we improve Ttrc further, even for a subset of the non-beneficial scenarios
where Ttrc > Ttruc ?

(A): Compress the data to be transferred
before the request to transfer that
data is received.

(B): When receiving the compressed data,
do not decompress it. Then do
whatever you want to do with the
data on the compressed data.

(C): Let compression and transfer overlap.

(D): Let decompression and transfer
overlap.

Prof. Dr. Jens Dittrich Databases 2 9 / 23

Solution (A–D)

all correct!

Notice our hidden assumption for Ttrc that the three steps (compress, transfer, and
decompress) are executed one after another (in computer science-lingo: in serial). This is
rarely required in practice!

see exercise

Prof. Dr. Jens Dittrich Databases 2 10 / 23

The Key Questions with Google Maps (1/2)

Key questions: for this concrete application (Google Maps):

2. How to make query process-
ing efficient and scalable?

which queries?:
(a) 2-dimensional range queries,
(b) text search on geonames.
How does a database process such a query?

3. How to make this happen for
just any kind of data

what data?:
(a) satellite images (raster data),
(b) roads, borders, etc. (vector data),
(c) geographic names (text)

Prof. Dr. Jens Dittrich Databases 2 11 / 23

 3

Vektordaten: Polygone &Texte Rasterdaten: Luftaufnahmen von
Satelliten und Flugzeugen

Domains

Domain (German: Domäne, Wertebereich)

A domain D describes all possible values of a variable.

Example:

integer, float, String, etc.

all kind of enumerations: {female, male, diverse}
any restriction/composition of a domain: all integers smaller 42

any kind of structured type1 like JSON, a graph, any byte sequence (BLOB: binary large
object)

1If you see textbooks claiming that domains have to be atomic, just ignore it: it is a historical artefact and
outdated.

Prof. Dr. Jens Dittrich Databases 2 13 / 23

The Relational Model2: Tuples, Attributes

Relation

A relation is a subset of the crossproduct of n domains. In other words, a relation R is defined
as R ⊆ D1 × . . .× Dn.

Tuple

Every element t = (a1, . . . , an) ∈ R, a1≤i≤n ∈ Di is called a tuple. The ai are called attributes.

Order of Tuples

The order of the tuples in a relation does not matter.

2We follow the notation used in the textbook “Datenbanksysteme” by Kemper&Eickler.
Prof. Dr. Jens Dittrich Databases 2 14 / 23

Relational Schema

Relational schema

A relational schema specifies both the domains and the attribute names of a relation. This
means, in contrast to the domain-based definition of a relation (shown above) we additionally
specify attribute names. A relation schema is denoted as a sequence
[R] : {[A1 : D1, . . . ,An : Dn]}.
The attribute names must be duplicate-freea.
Any instance of a relational schema is (also) called a relation.

aThis rule is no strict requirement and could be dropped, but it makes life much easier.

Examples:

[cities] : {[id:int, name:string, latitude:float , longitude:float, inhabitants: int]}

Order of Attributes

The order of the attributes in a relational schema definition does not matter.

Prof. Dr. Jens Dittrich Databases 2 15 / 23

 5

 6

 8

Raster mit Auflösung 1 Pixel per 10 km Breite

1 Pixel ≙ 100km²

Anzahl der Pixel wächst
quadratisch in der Auflösung!

Raster mit Auflösung 1 Pixel per 1 km Breite

1 Pixel ≙ 1km²

510.100.000 km² ≙ 5 M Pixel 510.100.000 km² ≙ 510 M Pixel

Relational Schema for this scenario
[tiles] : {[id:int, zoomlevel:int, xpos:int, ypos: int, filepath:string]}

Explanation:

zoomlevel: from 0 to maxZoomlevel , 0 being the lowest, maxZoomlevel the highest
resolution
xpos: the offset of a tile in x-direction
ypos: the offset of a tile in y-direction
filepath: the filepath to the tile image on disk (alternatively a BLOB, binary large object)

Constraints:

xpos ∈ [0, . . . , 2zoomlevel − 1]
ypos ∈ [0, . . . , 2zoomlevel − 1]

Number of tiles/tuples is:

40 + 41 + 42 + . . . =
maxZoomlevel∑
zoomlevel=0

4zoomlevel =
1

3
· (4maxZoomLevel+1 − 1)

Prof. Dr. Jens Dittrich Databases 2 19 / 23

Query and Point Query

Query

Any expression σP(R) where P is a predicate defined on relational schema [R], i.e., a function
P : R 7→ {true, false}, is called a query on R.
The result of a query σP(R) ⊆ R contains all tuples of R for which the predicate P holds.

Example: P := zoomLevel = 2: This is a predicate on the relational schema [tiles].

Equality Predicate/Point Query

Given a relational schema [R] with an attribute Ai , a corresponding one-dimensional domain
Di , and a constant c ∈ Di . Then, σAi=c(R) is called an equality predicate or point query on R.
This query selects all tuples t = (a1, . . . , an) ∈ R where the one-dimensional point ai equals c .

Example: σzoomLevel=2(tiles): This is a query selecting all tiles on zoom-level 2.

Prof. Dr. Jens Dittrich Databases 2 20 / 23

Computing the Results to a Query

In order to compute the results to a query of form σP(R) we basically only have two options:

Brute-Force (aka Scan)

We inspect each and every tuple in R and check whether P holds, and if that is the case add
the tuple to the result set.

Index (aka Index Scan)

We organize the contents of R such that we do not have to inspect each and every tuple to
determine whether a tuple belongs to the result of a query.

In order to understand ‘Indexing’ we first have to introduce a couple of concepts3...

3The following introduction diverts from well-known textbooks and other explanations as those explanations
frequently mix up the core idea of an index with its concrete physical realisation.

Prof. Dr. Jens Dittrich Databases 2 21 / 23

Horizontal Partitioning

Horizontal Partitioning

Given a relation R any assignment of the tuples of R into relations R1, . . . ,Rk is called a
horizontal partitioning of R if ∀t∈R∃Ri ,1≤i≤k with t ∈ Ri . The Ri s are called the horizontal
partitions of R.

Examples: R = {(2,A), (7,B), (1,B), (6,C)}

R1 = {(2,A), (1,B), R2 = {(7,B)), (6,C)} is a horizontal partitioning.

R1 = (1,B), R2 = {(7,B), (2,A), (6,C)} is a horizontal partitioning.

R1 = {(2,A), (1,B), R2 = {(2,A), (6,C)} is not a horizontal partitioning.

Disjoint Horizontal Partitioning

A horizontal partitioning is called disjoint if Ri ∩ Rj = ∅ ∀i ,j 6=i .

R1 = {(2,A), (1,B), R2 = {(7,B), (2,A), (6,C)} is a horizontal partitioning but not disjoint.

Prof. Dr. Jens Dittrich Databases 2 22 / 23

Partitioning Function

Partitioning Function

Given a domain D, any function p : [R]→ D is called a partitioning function.

Examples:
[R] = {[a : int, b : char]},R = {(2,A), (7,B), (1,B), (6,C)}

p0 : [R]→ int, p0(t) := t.a modulo 2

p0((2,A)) = 0

p0((7,B)) = 1

p0((1,B)) = 1

p0((6,C)) = 0

p1 : [R]→ char , p1(t) := t.b

p1((2,A)) = A

p1((7,B)) = B

p1((1,B)) = B

p1((6,C)) = C

Prof. Dr. Jens Dittrich Databases 2 23 / 23

