Universität des Saarlandes Fachrichtung Mathematik

Dr. Christian Steinhart Friedrich Günther

Übungen zur Vorlesung "Höhere Mathematik für Ingenieure IV B" Sommersemester 2025

Blatt 10

Abgabe bis Freitag, 27. Juni 2025, 20 Uhr

Aufgabe 1 (2+2+2+2=10 Punkte): Seien z_0 ein Punkt der komplexen Ebene, r > 0 und $f: B^{\bullet}(z_0, r) \to \mathbb{C}$ holomorph mit einer isolierten Singularität in z_0 . Welche der folgenden Aussagen sind wahr oder falsch? Begründen Sie jeweils kurz, warum die Aussage wahr ist, oder geben Sie ein Gegenbeispiel an.

- (i) Hat f eine hebbare Singularität in z_0 , dann ist $\operatorname{res}_{z_0}(f) = 0$.
- (ii) Ist $\operatorname{res}_{z_0}(f) = 0$, dann hat f eine hebbare Singularität in z_0 .
- (iii) Hat f eine Polstelle in z_0 , dann ist $\operatorname{res}_{z_0}(f) \neq 0$.
- (iv) Hat f eine mehrfache Polstelle in z_0 , d. h. eine Polstelle von Ordnung wenigstens 2, dann ist $res_{z_0}(f) \neq 0$.
- (v) Hat f eine wesentliche Singularität in z_0 , dann ist $\operatorname{res}_{z_0}(f) \neq 0$.

Aufgabe 2 (2+2=4 Punkte): Seien U eine offene Teilmenge von \mathbb{C} , a ein Punkt in U und $f: U - \{a\} \to \mathbb{C}$ eine holomorphe Funktion.

(i) Hat f in a eine Polstelle der Ordnung 1 und ist $g \colon U \to \mathbb{C}$ holomorph, dann gilt

$$res_a(fg) = g(a) res_a(f).$$

(ii) Ist auch $g \colon U - \{a\} \to \mathbb{C}$ holomorph, dann gilt für jede komplexe Zahl λ

$$res_a(f + \lambda q) = res_a(f) + \lambda res_a(q).$$

Aufgabe 3 (2+2+2=6 Punkte):

- (i) Seien $f\colon\mathbb{C}\to\mathbb{C},\ z\mapsto z^2-1$ und $g\colon\mathbb{C}\to\mathbb{C},\ z\mapsto z^4-18z^2+81$. Berechnen Sie $\mathrm{res}_3(f/g)$.
- (ii) Berechnen Sie $res_2(exp(sin(z)))$.
- (iii) Berechnen Sie $\operatorname{res}_0((\cos(z)-1)/2z^3)$.