News

Keine Zusatzvorlesung am Mittwoch Morgen

Written on 02.02.26 by Jonas Metzinger

Hallo an alle,

wie bereits in der Vorlesung am letzten Mittwoch gesagt, findet am Mittwoch Morgen keine Zusatzvorlesung statt.

Viele Grüße
Jonas

Folgeveranstaltung im Sommersemester 2026

Written on 16.01.26 by Jonas Metzinger

Hallo an alle,

wie bereits angekündigt gibt es Überlegungen im Sommersemester eine weitere Veranstaltung im Bereich Operatorenalgebren anzubieten. Möglich wären hier sowohl ein (Pro-)Seminar als auch eine Vorlesung (4.5 oder 9 CP). Thematisch würden sich "K-Theorie von C*-Algebren" oder… Read more

Hallo an alle,

wie bereits angekündigt gibt es Überlegungen im Sommersemester eine weitere Veranstaltung im Bereich Operatorenalgebren anzubieten. Möglich wären hier sowohl ein (Pro-)Seminar als auch eine Vorlesung (4.5 oder 9 CP). Thematisch würden sich "K-Theorie von C*-Algebren" oder "Quantengruppen" anbieten. Auch andere Themen wären sicherlich möglich, für Vorschläge sind wir offen. Halten würden diese Veranstaltung voraussichtlich Luca Junk und ich.

Solltet ihr Interesse haben, würde ich euch bitten mir im Laufe der kommenden Wochen kurz Bescheid zu geben (gerne per Mail).

Viele Grüße und ein schönes Wochenende!
Jonas

Operator algebras II: Graph C*-Algebras

Graph C*-algebras are a class of C*-algebras constructed from directed graphs. They form a bridge between algebra, analysis, and combinatorics. Their origins trace back to the 1980s with the work of Cuntz and Krieger, who introduced what are now called Cuntz–Krieger algebras. These arose in the study of Markov processes and symbolic dynamics.

In the 1990s, it was realized that Cuntz–Krieger algebras could be seen as special cases of a broader class: graph C*-algebras. Since then, a rich field of research has developed, touching on dynamical systems, K-theory, Morita equivalence, groupoid theory, and more.

Graph C*-algebras are not only concrete and accessible but also offer deep insights into structural questions: When is a C*-algebra simple? What does its ideal structure look like? How can such algebras be classified? These questions can often be tackled explicitly in the graph-theoretic setting.

Lecture and exercise sessions

Lecturer: Prof. Dr. Moritz Weber

Assistant: Jonas Metzinger


Lecture time: Wednesdays from 12 noon s.t. to 1.30 p.m. in Lecture Hall 4, E2.4

Exercise sessions: Every two weeks on Wednesdays from 10 a.m. to 12 p.m., starting on 3 December in Seminar Room 5, E2.4

Contents

  • Definition of Cuntz-Krieger families, graph C*-algebras
  • Gauge actions, Uniqueness theorems for graph C*-algebras
  • Simplicity and ideal structure
  • Geometric classification: Moves on simple graph C*-algebras

Further content will be included in the exercises.

Language

The course will be taught in English unless all participants speak German.

Prerequisites

Knowledge about C*-algebras and universal C*-algebras as in the ISEM 24 lecture notes is required.

Exercise sessions

There will be exercise sessions every two weeks, starting in the 8-th week of lecture time.

The exercise sessions will be structured as a small seminar. At the beginning of the semester, you will be given a selection of topics to choose from. You will then prepare these in pairs and give together a presentation (60 to 90 minutes) on them.
In the week before (!) the presentation, you will meet with Jonas to discuss the presentation.

There will be a sheet for each topic, which will tell you what to focus on.  Keep in mind that some topics can seem very technical, so start asking questions right at the beginning of your preparation.

 

Date Topic Talk is given by
03. December Hypergraph C*-algebras Hendrik and Alex
17. December Cuntz-Pimsner algebras Marie and Celine
14. January Classification of graph C*-algebras via K-theory Benjamin (and Jonas)
21. January Morita Equivalence Elias and Luc
28. January Higher rank graphs Cuma and Gajanan
04. February Additional lecture (?)

 

 

Exam and admission requirements

There will be an oral exam. You can obtain 4.5 CP. To be admitted, you must attend the exercises regularly and have given a talk.

Your presentation topic will also be a small part of the oral exam.

Literature

Any reader who is insufficiently curious to have wondered about this should instead be asking: Why am I reading this book at all?
(E.C. Lance in "Hilbert C*-Modules: A toolkit for operator algebraists")

Basics on C*-algebras and universal C*-algebras:
The lecture notes by Ian Raeburn are used as the main source for the lecture:
Additional literature on Geometric Classification and Moves on Graph C*-algebras (arXiv Links):

 

Privacy Policy | Legal Notice
If you encounter technical problems, please contact the administrators.